Literature review


The following review is my own interpretation of the linked-to article. Please do not use my review as a complete reference for the article as I will most likely skip important information that you feel is relevant. If I do miss something, please feel free to comment about it in the comments section below. Please read the article before reading my review and remember, this is my notebook, which means these are my notes on the article and they will more-than-likely hold no relevance to you or your research.


Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology 2: 95–108. doi:10.1038/nrmicro821.


I decided to ask the question; what is a biofilm? Usually, I would start with a review on the subject to try and answer this question and this is exactly what I decided to do. Again, as usual, I “picked” the first review article I found from a Google Scholar Search. Too bad the article isn’t OA.

  • The authors state that biofilm formations appear in fossil records dating back to 3.25 billion years ago.
  • Figure 1 is pretty spectacular and is well commented.
  • They make a compelling argument stating that; making biofilms is an ancient and integral part of prokaryotes.
    • In the early evolution of Earth, there were extreme and fluctuating conditions such as UV, pH, and temperature changes. Having a biofilm to live in created a homeostasis were the bacteria could live and learn how to communicate. This is an interesting argument and they reference a paper for it.
    • They also mention that creating biofilms could help sequester nutrients, they reference a paper for this statement as well.
  • They define the following terminology: planktonic cells are those that are freely swimming in their environment while sessile ones are in a biofilm.
  • They make a note of different ways in which bacteria will form biofilms and note that the structural similarities are possibly due to “convergent survival strategies”. Some of the convergent survival strategies include: streamers, periphyton, and stromatolite (defined in the paper).
    • I have to disagree here as I cannot believe that a group of bacteria are actively creating structures in different environments. I can, however, attribute fluid flow aiding in structural similarities between the shapes of biofilms that form in say fast flowing environments as opposed to calm quiescent environments.
  • They claim that “The proclivity of bacteria to adhere to surfaces and form biofilms in so many environments is undoubtedly related to the selective advantage that surface association offers.”
    • I think they mean that bacteria have learned how to create biofilms because they are evolutionarily advantageous.
  • They note that people have done studies where they attempt to knock out genes that show biofilm creation. In those studies, they found that knocking out the genes just retarded biofilm growth and thus it must be a fundamental and redundant gene in the bacteria….Very cool!
  • Yes! They reference an article that did biofilm modeling.
    • van Loosdrecht, M. C., Heijnen, J. J., Eberl, H., Kreft, J. & Picioreanu, C. Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek. 81, 245–256 (2002).
  • Biofilms will release their colony in a few different means:
    • Swarming dispersal.
    • Clumping dispersal.
    • Surface dispersal.
  • They state that biofilms can be thought of as hydrogels.
  • They state that there are (were in 2004) 3 proposed mechanisms to explain why biofilms are resistant to antibiotics.
    • Barrier properties of the slime matrix.
    • The physiological state of the biofilm. There are layers in the biofilm that have dormant cells and thus antibiotics end up being trapped there with not affect on the cells.
    • Subpopulations of resistant cells.
  • The authors state that Parsek and Singh (cited) proposed four criteria for defining a biofilm infection in a human.
    • The pathogenic bacteria are surface associated or adherent to a substratum.
    • Bacterial clusters, encased in a matrix of bacterial or host constituents.
    • The infection is localized.
    • The infection is resistant to antibiotic therapy.
  • Bacteria will modify their phenotypes for biofilms.

So, the second half of the paper talked about biofilms on implants and cystic fibrosis. There was a ton of stuff in this section that I didn’t quite grasp so I’ll have to revisit it in the future. Overall, this was a good review of what makes biofilms, where they form, and some characteristics of them once they are created.


open notebook science logo



  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: